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Abstract 

Projects of the New Space economy such as SpaceShipTwo and New Shepard are on their way to shifting the 
paradigms in space tourism and transportation. Being privately financed, they are also changing the way in which 
highly complex and formerly government-financed systems are now being developed. Looking to the future, we can 
envision humanity moving to space, an opportunity that will be available to many more of us as a result of these new 
paradigms. One of the core issues we encounter when we start the development of complex systems such as the 
suborbital transportation and space tourism systems is: what are the concepts available and how can these concepts 
be represented using strictly defined ontology and model semantics? In this work we present a model-based concept 
framework that aims to address this issue. First a concept framework methodology is presented, after which we 
demonstrate its applicability to suborbital human spaceflight missions – SpaceShipTwo and New Shepard. The 
analytical conceptual difference between these concepts is demonstrated. The proposed framework includes: the 
information that characterizes stakeholders and their needs; the solution-neutral environment (the problem statement) 
in which we formulate the functional intent; the solution-specific environment (solution statement) in which we see 
the possible solutions; the decomposition of such solution into internal elements and functions; and the concept of 
operations. Each one of these entries of the concept framework has a counterpart represented in conceptual modeling 
languages, such as Object-Process Methodology (OPM) or the System Modeling Language (SysML). Such a model-
based concept framework encodes the core information required to define a suborbital tourism concept and represent 
it in a digital environment. We believe this will become a powerful tool to support the makers of architectural 
decisions that lead to concept and eventually to architecture. 
Keywords: concept, conceptual design, model-based system engineering, suborbital systems, space tourism 
 
1. Introduction 

Model-based conceptual design (MBCD) is the 
“application of Model-Based Systems Engineering 
(MBSE) to the exploratory research and concept stages 
of the generic lifecycle” [1]. Our work is motivated by 
the desire to demonstrate how a model-based concept 
framework, developed based on system architecture 
principles [2], enables the representation of conceptual 
design information. This would create an opportunity to 
explore the alternative concepts for suborbital human 
spaceflight missions, keeping track of conceptual 
difference among competing options. The objective of 
this paper is to develop and present a unified concept 
framework, and demonstrate that when applied to 
alternative suborbital concepts it contains information 
about differences in alternative suborbital concepts, 
such as Virgin Galactic’s SpaceShipTwo [3] and Blue 
Origin’s New Shepard [4]. 
Since the creation of Ansari X Prize contest [5] a new 
market of suborbital tourism appeared on the map of 
space activities. Over the last two decades the dozens of 
projects were initiated, aiming at making suborbital  
spaceflight systems reliable and enjoyable for space 
travelers. Indeed, the suborbital spaceflight systems  

 
create not only the opportunity for a space tourism 
market, but also for such promising areas as point-to-
point transportation. According to the estimates of 
Peeters [6] and the International Space University [7], 
suborbital transportation would reduce the time spent on 
New York - Tokyo route from the current 13 hours on a 
commercial airplane to 90 minutes on a suborbital 
vehicle. This would enable to attract those travelers who 
are more focusing on time savings, rather than ticket 
price.  

The utility of the proposed concept framework is 
that if the system engineer adopts it, he or she will have 
a tool that digitally supports the design process. Another 
utility is that such a framework facilitates the analysis of 
complex systems, as well as synthesis of the systems 
under development. 

On April 29, 2018 the Blue Origin company 
announced that its New Shepard’s crew capsule reached 
an apogee of 107 km - the targeted altitude for the 
operations. On July 26, 2018 Virgin Galactic’s VSS 
Unity (SpaceShipTwo) reached Mach 2.4 arriving at an 
apogee of 51 km. These accomplishments demonstrate a 
continuing competition in the suborbital space tourism 
sector, and the clear path to sustainable market. 
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Meanwhile, when we see a new suborbital space 
venture, or analyze an existing one, we observe a lack of 
common representation of conceptual information about 
the system. The information on each system is presented 
differently, depending on previous experience of system 
engineers of the specific project. This identifies a 
research opportunity: to create a more rigorous and 
digitally supported approach to the conceptual design 
phase. Thus, the specific objective of this paper is to 
demonstrate a model-based concept framework which 
supports conceptual design phase by encoding the 
conceptual information about multiple alternatives. This 
will be applied to suborbital space tourism concepts 
using a strictly defined ontology and model semantics. 

This paper is organized as follows. In section 2 we 
discuss the system architecture methods that are used in 
the paper. Section 3 demonstrates unified framework 
that contains the entries of concept framework. In 
section 4 we apply the proposed framework to two 
suborbital projects, namely, Virgin Galactic’s 
SpaceShipTwo and Blue Origin’s New Shepard. We 
discuss the conclusions and the limitations of our work 
in section 5. 
 
2. System architecture methods 

In our paper we are applying the system architecture 
methods at the early stages of design process – 
conceptual design [2]. The central idea is to define 
“concept” as the mapping of form to function. 
“Conceptual design” is considered the movement from 
the solution-neutral to the solution-specific environment 
(see Figures 1 and 2) [8]. The system architecture 
approaches can be effectively encoded into the model-
based environment, such as Object-Process 
Methodology (OPM) [9] or SysML [10]. We chose 
OPM, as it is representing the system graphically in a 
smaller number of diagrams compared to SysML. In our 
paper we apply the proposed concept framework to 
suborbital human spaceflight missions, representing 
them in a model-based environment. 

In Figure 1 the three important entities of any system 
are identified. Any system can be described by means of 
an operand, process, and form. The process is the 
activity that changes the state of the operand. The form 
is an instrument that is used to perform the function 
(operand plus process). The details of these entries, 
among other entries of the concept framework are 
presented in Figure 2 and discussed in the next section. 

In our paper we use the OPM notation. According to 
this modelling language, the operands and elements of 
form are objects represented by rectangles, while the 
processes are represented by ovals. The specialization 
link is denoted by white triangle, and the decomposition 
link is denoted by black triangle. Attributes are 
indicated by two triangles, a black one inside the white 

one. We will use the OPM notation throughout this 
paper. 
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Fig. 1. Concept as a specific operand, process and form, 
specialized from solution-neutral information. Note that 

the numbers correspond to those in Figure 2. The 
notation is that of Object-Process Methodology (OPM) 

 
3. Unified concept framework 

The unified concept framework is presented in 
Figure 2, in which the entries of the framework are 
outlined. These 28 entries are spread among 5 assertions 
and marked by different colors in order to facilitate their 
identification with an assertion. For example, we can 
see that the first assertion (on stakeholder) contains two 
entries in the concept framework: the stakeholders and 
their need. By stakeholders we imply “any group or 
individual who can affect or is affected by the 
achievement of the organization’s objectives” [11]. The 
second assertion (on solution-neutral environment) has 
five entries, numbered from 3 to 7, and is dedicated to 
the environment in which the solutions are not known 
[12, 13]. The main goal of this part of framework is to 
formulate the problem statement based on stakeholders’ 
need. 
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Fig. 2. Table view of the unified concept framework of 

28 entries organized around five main assertions 
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The third assertion (on solution-specific 
environment) has nine entries, from 8 to 16, and is 
commonly known as the conceptual design [14, 15]. 
The main purpose of this part of the concept framework 
is to conceptualize the possible solution, or the 
alternative solutions by specializing the abstract 
information to a more concrete set of information.  

The fourth assertion is dedicated to the integrated 
concept and is containing nine entries, from 17 to 25. 
By decomposing the solution’s form into internal 
elements, the system architect can identify the internal 
functions fulfilled by such internal elements of form. 
Structure and interactions (entries 24 and 25) inform the 
relationships among the internal elements of forms in 
both physical and functional domain [16]. The fifth 
assertion deals with the concept of operations, having 
three entries from 26 to 28. This information 
encompasses the concept of operations (entry 26), the 
operator (entry 27), and the context (entry 28) under 
which the system is intended to operate [17]. 

It is the hypothesis of our work that having the 
detailed information about each one of the entries of 
Figure 2 the system architect captures the core essence 
of the concept. This information can be effectively 
represented by means of the model-based approaches, 
and enables the development of systems at the 
conceptual stage in engineering environments, such as 
concurrent engineering design environment [18]. 
 
4. Model-based concepts for Virgin Galactic and 
Blue Origin systems 

Applying our methodology to suborbital spaceflight 
systems, we start with the first entries of the concept 
framework: stakeholders and their needs (entries 1 and 2 
of Figure 2). We define the stakeholders as the 
“tourists”, who have a need “have fun” (see Figure 3). 
As we discussed earlier, the suborbital systems might 
also serve as a point-to-point transportation system [6], 
[7]. In this case the stakeholders would be the 
“travelers”, who would have the need to “get 
somewhere”. We will use the current tourism need as 
the reference. 
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Fig. 3. The first assertion of the Unified concept 

framework: table view (a) and OPM view (b) 

Once we have decided on the first stakeholder 
entries of the concept framework, we may proceed with 
identification of solution-neutral environment’s entries. 
In the solution-neutral we should stay as abstract as 
possible in order to allow for a broad space of 
alternatives and not to suggest any aspect of the 
solution. Thus, “entertaining” (entry 6) “individuals” 
(entry 3) is an appropriate solution-neutral’s function 
that might lead to space tourism concepts. At this level 
of concept development the system architect is allowed 
to state the solution-neutral operand’s value attribute 
(such as “enjoyment level”) and other attributes (such as 
“number”); and solution-neutral process’ attribute (such 
as “safely”). The full solution-neutral problem statement 
is to “increase the enjoyment level (i.e. entertain) of 
individuals, safely.” (see Figure 4). 
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Fig. 4. The second assertion of the Unified concept 

framework in table view 
 

Conceptual design is the movement from solution-
neutral to solution-specific environment. In other words, 
conceptual design is the reasoning about how to 
specialize the operand and process of the second 
assertion (see Figure 2) to the more specific ones in the 
third assertion. The specialized operand/process are 
more concrete. As such, the specialized operand of 
solution-neutral operand “individuals” would be 
“passengers”; while the specialized process of solution-
neutral process “entertaining” would be “flying”. Note 
that the attributes are inherited: if the solution-neutral 
operand/process has had some attribute, it is inherited 
by the solution-specific operand/process. So flying must 
be “safe.” Another major difference between the 
solution-neutral and solution-specific environments is 
the presence of form, the instrument that executes the 
specific function “flying passengers”. The generic form 
(entry 13) is “Suborbital vehicle”, and the specific form 
(entry 15) is either “Virgin Galactic system” or “Blue 
Origin system”. In other words, at the 15th entry of the 
concept framework we start distinguishing the 
alternative solutions for the same solution-neutral and 
solution-specific functions that aim to fulfill the needs 
of stakeholders. This information is summarized in 
Figure 5 (table view) and Figure 6 (OPM view). 
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Figure	5	
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Fig. 6. The third assertion of the Unified concept 

framework in an OPM view 
 

In our work we are focusing on the model-based 
representation of the integrated concept using the 
unified framework (Figure 2). This allows us to 
visualize two concepts on consistent levels of 
granularity [19], and retrospectively to analytically 
measure the conceptual difference between the concepts 
[20]. 

The integrated concepts for Virgin Galactic system 
and Blue Origin system projects at the first level 
decomposition are shown in Figures 7 to 10. At this 
level of decomposition the system engineer can identify 
the internal elements of form (entry 22) that serve as the 
instruments for corresponding internal processes (entry 
20) acting on internal operands (entry 17).  

The Figure 7 demonstrates the decomposition of the 
specific form “Virgin Galactic system” (entry 15) into 
the internal elements of form (entry 22) 
“WhiteKnightTwo” and “SpaceShipTwo”, each one of 
which perform its own function. For example, 
WhiteKnightTwo’s internal process is “carrying” (entry 
20A), and internal operand is “SpaceShipTwo” (entry 

17A) - see Figure 7(a). SpaceShipTwo’s internal 
process is “flying” (entry 20B), and internal operand is 
“passengers” (entry 17B) – see right hand side of Figure 
7(a). The attributes of the internal 
elements/processes/operands are shown in both 
representations of the first level decomposition – table 
in Figure 7(a) and OPM in Figure 7(b). Note that 
sometimes the same object might be both operand and 
instrument, as it is in case of SpaceShipTwo. In one 
case the SpaceShipTwo is an operand, as it is in column 
A of Figure 7(a), in another case – an instrument, as it is 
in column B of Figure 7(a). This information is also 
encoded in Figure 7(b), in which the block 
“SpaceShipTwo” has both indications - 17A, 22B. 
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Fig. 7. The integrated concept (fourth assertion) at the 
first level decomposition for Virgin Galactic system in a 

table view (a) and in an OPM view (b). The entries' 
names are described in Figure 2 

 
The information about structure (entry 24) and 

interactions (entry 25) at the first level decomposition is 
summarized in Figure 8. The structure is the 
physical/logical relationship of elements to each other. 
The interactions have a dynamic nature as something is 
shared or exchanged during operations. 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  
Copyright ©2018 by Mr. Yaroslav Menshenin. Published by the IAF, with permission and released to the IAF to publish in all forms. 

IAC-18.D1.4A.8        Page 5 of 11 

WhiteKnightTwo	 SpaceShipTwo	

Attached	
below	

WhiteKnightTwo	 SpaceShipTwo	

Transfers	
force	

24A,	24B	

25A,	25B	

Figure	8A,	8B	

 
a 
 

WhiteKnightTwo	 SpaceShipTwo	

Attached	
below	

WhiteKnightTwo	 SpaceShipTwo	

Transfers	
force	

24A,	24B	

25A,	25B	

Figure	8A,	8B	

 
b 

Fig. 8. The structure (a) and interactions (b) (fourth 
assertion) at the first level decomposition for Virgin 

Galactic system 
  

From Figure 8 we can see that SpaceShipTwo is 
“attached below” of WhiteKnightTwo. The 
WhiteKnightTwo “transfers force” to SpaceShipTwo. 

In Figure 9 we capture the first level decomposition 
of the specific form “Blue Origin system” (entry 15) 
into the internal elements of form (entry 22) “Propulsion 
module” and “Capsule”. From both of these Figures we 
see that the internal elements of form “propulsion 
module” (entry 22C) and “capsule” (entry 22D) perform 
the internal functions “carrying capsule” (entries 20C 
plus 17C) and “flying passengers” (entries 20D plus 
17D), correspondingly. 
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Fig. 9. The integrated concept (fourth assertion) at the 
first level decomposition for Blue Origin system in a 
table view (a) and in an OPM view (b). The entries' 

names are described in Figure 2 

The information about structure (entry 24) and 
interactions (entry 25) at the first level decomposition is 
summarized in Figure 10. From this Figure we can see 
that Capsule is “attached above” the Propulsion module. 
The Propulsion module “transfers force” to Capsule. 
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Fig. 10. The structure (a) and interactions (b) (fourth 
assertion) at the first level decomposition for Blue 

Origin system 
 
From Figures 7(b) and 9(b) we may see that 

conceptually the Virgin Galactic and Blue Origin 
concepts are identical at the first level of decomposition 
for the entries 17 to 23 of the concept framework, so as 
the system designers we have to go to the next level of 
decomposition to start distingushing the difference 
between these concepts. Concerning the entries 24 
(structure) and 25 (interactions) the concepts are 
different: for instance, SpaceShipTwo “attached below” 
WhiteKnightTwo (see Figure 8), while Capsule 
“attached above” Propulsion module (see Figure 10). 

One of the benefits of the system architecture 
principles is that they remain the same at all levels of 
decomposition [21]. From a careful examination of the 
Figures 7(a) and 9(a) we may notice that the internal 
elements of form (entries 22A, 22B), namely, 
“WhiteKnightTwo” and “SpaceShipTwo” for Virgin 
Galactic system, and “Propulsion module” and 
“Capsule” (entries 22C, 22D) for Blue Origin system 
can be further decomposed into their own internal 
elements, processes, and operands.  

Consider the decomposition of the Virgin Galactic’s 
internal elements of form “WhiteKnightTwo” and 
“SpaceShipTwo” (see Figure 11) into the second level 
decomposition. If we consider the example of 
WhiteKnightTwo in details - see Figure 11(a), we will 
see that this internal element of form is further 
decomposed into five internal elements: landing gear 
(entry 22A1), wings (entry 22A2), aerodynamic 
surfaces (entry 22A3), jet engine (entry 22A4), and 
pilots (entry 22A5). Each one of these forms perform its 
own internal function, or internal functions: “launching 
WhiteKnightTwo”, “lifting WhiteKnightTwo”, “guiding 
WhiteKnightTwo”, “increasing (the energy of) 
WhiteKnightTwo”, “increasing (the energy of) 
SpaceShipTwo”, “landing WhiteKnightTwo”, “carrying 
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SpaceShipTwo”, correspondingly. Note two important 
observations: landing gear performs two internal 
functions; and the instrument of decreasing the 
WhiteKnightTwo’s energy is its airframe (WK2 itself). 

If we consider the example of SpaceShipTwo in 
details - see Figure 11(b), we will notice that this 
internal element of form is further decomposed into six 
internal elements: wings (entry 22B1), aerodynamic 
surfaces (entry 22B2), thrusters (entry 22B3), rocket 
engine (entry 22B4), landing gear (entry 22B5), and 
pilots (entry 22B6). The performing functions are: 
“lifting SpaceShipTwo”, “guiding SpaceShipTwo”, 
“guiding SpaceShipTwo”, “increasing (the energy of) 
SpaceShipTwo”, “decreasing (the energy of) 
SpaceShipTwo”, “landing SpaceShipTwo”, and “flying 
passengers”, respectively. Note that the instrument of 
“separating SpaceShipTwo” is WhiteKnightTwo. 
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Fig. 11. The integrated concept (fourth assertion) at the 
second level decomposition for Virgin Galactic’s 

“WhiteKnightTwo” (a) and “SpaceShipTwo” (b). The 
entries' names are described in Figure 2 

 
The OPM representation of the same information as 

it is indicated in Figures 11(a) and 11(b) is presented in 
Figure 12. We may see that the information encoded 
into the OPM view is much more compact and readable, 
comparing to the table format. Note that we do not 
include the information about all inherited attributes of 
the internal operands, internal processes, and internal 
elements of form, yet there is the information about type 
of launch and landing with corresponding attributes. 
Thus, WhiteKnightTwo together with SpaceShipTwo 
launches horizontally from ground and lands 
horizontally on ground; while SpaceShipTwo launches 
horizontally at altitude, and lands horizontally on 
ground. 
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Fig. 12. OPM representation of the integrated concept (fourth assertion) at the second level decomposition for Virgin 

Galactic’s “SpaceShipTwo” and “WhiteKnightTwo” 
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The structure and interactions among the second 
level elements of form (entries 24 and 25, respectively) 
are presented in Figures 13 and 14, respectively. This 
information represents the second level decomposition. 

For instance, from the Figure 13 we can see that the 
physical connection between jet engine and wings is 
that the jet engine is “attached below” of wings. The 
aerodynamic surfaces “attached at rear” of 
WhiteKnightTwo. The pilots are “within” the 
WhiteKnightTwo, and so on. 
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Fig. 13. OPM representation of the integrated concept 
(fourth assertion) at the second level decomposition’s 

structure information for the Virgin Galactic’s 
“SpaceShipTwo” and “WhiteKnightTwo” 

 
From the Figure 14 we may notice that, for example, 
pilots “provide input” to WhiteKnightTwo; while wings 
“provide lift” to SpaceShipTwo. 
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Fig. 14. OPM representation of the integrated concept 
(fourth assertion) at the second level decomposition’s 

interactions information for the Virgin Galactic’s 
“SpaceShipTwo” and “WhiteKnightTwo” 

 
Consider the decomposition of the Blue Origin’s 

internal elements of form “Propulsion module” and 
“Capsule” (see Figure 15) into the second level 
decomposition. If we consider the example of 
Propulsion module in details - see Figure 15(a), we will 
see that this internal element of form is further 
decomposed into three internal elements: rocket engine 
(entry 22C1), aerodynamic surfaces (entry 22C2), and 
landing gear (entry 22C3). The rocket engine performs 
the number of internal functions: “launching Propulsion 
module”, “increasing (the energy of) Propulsion 
module”, “increasing (the energy of) Capsule”, 
“decreasing (the energy of) Propulsion module”, and 
“landing Propulsion module”; the internal function of 

the aerodynamic surfaces is “guiding propulsion 
module”; the internal function of landing gear is 
“landing Propulsion module”. Note that the instrument 
of “carrying Capsule” is Propulsion module itself. 

The internal elements of form “Capsule” - see 
Figure 15(b) - is further decomposed into four internal 
elements: thrusters (entry 22D1), aerodynamic 
decelerators (entry 22D2), parachute (entry 22D3), and 
pilot (entry 22D4). Their internal functions are “guiding 
capsule”, “decreasing (the energy of) capsule”, “landing 
capsule” and “flying passengers”, respectively. Note 
that the instrument of separating capsule is propulsion 
module, and that the instrument of increasing the energy 
of capsule is rocket engine of propulsion module. 
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Fig. 15. The integrated concept (fourth assertion) at the 
second level decomposition for Blue Origin’s 

“Propulsion module” (a) and “Capsule” (b). The entries' 
names are described in Figure 2 

 
In Figure 16 we demonstrate the OPM representation of 
the same information as it is indicated in Figures 15(a) 
and 15(b). Similarly to the Virgin Galactic case, we do 
not include the information about the inherited internal 
operand’s, internal processes’, and internal elements of 
form’s attributes, yet there is the information about type 
of launch and landing with corresponding attributes. 
Thus, Propulsion module together with Capsule 
launches vertically from the ground and lands vertically 
on the ground; while Capsule separates at altitude and 
lands vertically on the ground. Such representation 
captures the difference between Virgin Galactic’s and 
Blue Origin’s projects using the conceptual modeling 
language.
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Fig. 16. OPM representation of the integrated concept (fourth assertion) at the second level decomposition for Blue 

Origin’s “Propulsion module” and “Capsule” 
 

The structure and interactions for the second level 
elements of form (entries 24 and 25, respectively) are 
presented in Figures 17 and 18, respectively. This 
information represents the second level decomposition. 

For example, Figure 17 informs us that for New 
Shepard thrusters “embedded” into capsule; while 
capsule is “attached” to propulsion module; and rocket 
engine is “embedded” into the propulsion module.  
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Fig. 17. OPM representation of the integrated concept 
(fourth assertion) at the second level decomposition’s 

structure information for the Blue Origin’s “Propulsion 
module” and “Capsule” 

 
In regards to the interactions, the Figure 18 

illustrates that capsule “transfers force” to the 
propulsion module; while rocket engine “provides 
thrust” to propulsion module of New Shepard.  

Both the structure and the interactions data are 
important, as they convey the information about the 

physical and functional relationships among the 
elements. 
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Fig. 18. OPM representation of the integrated concept 
(fourth assertion) at the second level decomposition’s 

interactions information for the Blue Origin’s 
“Propulsion module” and “Capsule” 

 
Comparing the Figures 12 and 16 we may notice the 

conceptual difference between both concepts. It is 
important to note that this difference appears at the 
second level of the decomposition. From this figures we 
may see not only the different internal elements that 
perform the same internal functions at the second level 
decomposition but also such information about 
conceptual difference as the way by which the specific 
concept performs the internal function "decreasing (the 
energy of) the module", for example. As such in case of 
Virgin Galactic concept the airframe of 
WhiteKnightTwo decreases its energy, while in case of 
Blue Origin concept the Propulsion module's rocket 
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engine both increase and decrease the energy of 
propulsion module. 

The utility of the model-based representation is that 
it allows us to clearly see what exactly form performs 
what function, and what internal form performs what 
internal function. 

This concludes the enumeration of the information 
that would be contained in the model-based 
representation of an integrated concept. 

The fifth and last assertion of the concept framework 
is the concept of operations (see Figure 2). This 
assertion includes the ConOps itself (entry 26), the 
operator (entry 27), and the context (entry 28); and is 
summarized in Figure 19, which is a table view of 
ConOps assertion. 

 

26	 See	diagrams	(Figures	20,	21)	

27	 Pilots	

28	 See	diagrams	(Figures	22,	23)	

Concept	of	Operations	

Figure	19	

 
Fig. 19. ConOps assertion (fifth assertion) for both 

alternatives in a table view 
 
The ConOps with the emphasis on SpaceShipTwo is 

shown in Figure 20. From this figure we can see that the 
Virgin Galactic system launches from the Mojave 
spaceport, reaches an altitude of 15km, at which the 
SpaceShipTwo separates from the WhiteKnightTwo. 
Then SpaceShipTwo climbs for about 90 seconds at the 
velocity of 4000 km/h to achieve the altitude of 100 km. 
Once there, it lofts to 110 km, after which it decelerates, 
unfolding the unique re-entry system. At the final stages 
of the mission the SpaceShipTwo performs the 
unpowered glide and finally lands back at the Mojave 
spaceport. 

 
Virgin Galactic: ConOps

 
Fig. 20. Concept of Operations (fifth assertion) for 

Virgin Galactic system 

The model-based representation reveals the key 
processes occurring during the operations of the system: 
"launching", "accelerating", "separating", 
"accelerating", "lofting", "decelerating", and "landing" 
indicated by process oval annotation in Figure 20. 

Blue Origin: ConOps

 
Fig. 21. Concept of Operations (fifth assertion) for Blue 

Origin system 
 

The ConOps for the Blue Origin system is pictured 
in Figure 21. The both New Shepard’s propulsion 
module and capsule are launched from the pad, after 
which the capsule separates from the propulsion 
module. Then the propulsion module decelerates and 
lands by means of rocket engine, while the capsule 
lands using the parachute system. The key processes 
illustrated by process ovals in Figure 21 are 
“launching”, “accelerating”, “separating”, “lofting”, 
“decelerating”, and “landing”. 

The operator (entry 27) is the person who is using 
the system [2]. In both cases, for the Virgin Galactic 
system and for the Blue Origin system, the operators are 
the pilots. 

The context surrounds the form of the system. In 
context we include all those systems that are relevant to 
system and its operations, sometimes called 
accompanying [2] or enabling systems [22]. In Figures 
22 and 23 the context for both alternative concepts are 
shown. We see that the system boundary distinguishes 
the system of interest from other systems that are 
relevant and should be taken into account. 
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Fig. 22. Context (fifth assertion) for Virgin Galactic 

system 
 

Consider the example of Virgin Galactic system 
presented in Figure 22. From this figure we notice that 
the “Virgin Galactic system” is inside the system 
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boundary, which is clear as this is the system under 
exploration. There are number of systems that are 
outside of system boundary, but relevant to it and 
should also be considered – such as the 
“Communication system”, “Spaceport Mojave”, and 
“Customer support”. Thus the context is important, as 
none of the systems operate alone, especially in our age 
of connectivity when systems are interacting with each 
other, support each other, and inform each other. 

Figure 23 demonstrates the context for the Blue 
Origin system. We may notice that this system is 
launched from the Corn Ranch Spaceport. 
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Fig. 23. Context (fifth assertion) for Blue Origin system 

 
5. Conclusions  

In this paper we proposed a model-based concept 
framework and demonstrated that it can be effectively 
used to capture the conceptual information about 
alternative concepts. We also demonstrated how this 
framework can be applied to the Virgin Galactic and 
Blue Origin systems. We have shown how, based on the 
stakeholders’ needs, the system architect can 
progressively move the design process to the 
formulation of the abstract solution-neutral function that 
is further specialized to the solution-specific 
information containing the possible alternative solutions 
for stated problem. The information for various 
concepts can be represented in the grid of Figures 2, 3A, 
4, 5, 7A, 9A, 11, 15, 19, or graphically (as in Figures 
3B, 6, 7B, 8, 9B, 10, 12, 13, 14, 16, 17, 18, 22, 23) and 
on the same level of granularity for systems such as 
Virgin Galactic and Blue Origin. As such, we can see 
the distinctive features between SpaceShipTwo and 
New Shepard. 

It is a finding of this work that there is actually a 
relatively large body of information necessary to 
document a concept. This in contrast with conventional 
practice, which usually captures a concept in a “tag 
line” (like Blended Wing Body) or a sketch. The 
inference is that in such conventional representations 
there must be a great deal of tacit knowledge, which 
when make explicit requires much more information to 
represent. 

This work might have several aspects of utility. One 
is the ability to encode textual information into a model-
based environment that keep the same semantics and 
level of granularity for the multiple alternative concepts. 
This makes it possible to engage the concurrent 

engineering design environment in earlier, conceptual 
stages of the design process.  

We believe that the proposed approach will serve the 
purpose of facilitating the development of new systems, 
as well as the exploration of the existing ones. 

Our approach has some limitations. The first lies in 
the necessity to include the specialists from a wide 
range of engineering fields into the design group aimed 
at the development of a specific concept. This requires 
them to operate using the same ontology and semantics, 
and using the same principles for encoding the graphical 
and textual information. Although in our paper we 
proposed the strictly defined approach to this problem, 
the issue with a team formation is still to be explored. 
Thus, this is a potentially promising direction of the 
future research. 

Another limitation deals with the ability of human 
designer to narrow down the set of alternative solutions 
taking into account the whole spectrum of possibilities 
and eliminating the potential bias based on experience 
and personal preferences.  
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